Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mass Spectrom Adv Clin Lab ; 28: 63-66, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2238250

ABSTRACT

Background: Our laboratory historically performed immunosuppressant and definitive opioid testing in-house as laboratory developed (LDT) mass spectrometry-based tests. However, staffing constraints and supply chain challenges associated with the COVID-19 pandemic forced us to refer this testing to a national reference laboratory. The VALID Act could impose onerous requirements for laboratories to develop LDTs. To explore the potential effect of these additional regulatory hurdles, we used the loss of our own LDT tests to assess the impact on patient care and hospital budgets. Methods: Laboratory information systems data and historical data associated with test costs were used to calculate turnaround times and financial impact. Results: Referral testing has extended the reporting of immunosuppressant results by an average of approximately one day and up to two days at the 95th percentile. We estimate that discontinuing in-house opioid testing has cost our health system over half a million dollars in the year since testing was discontinued. Conclusions: Barriers that discourage laboratories from developing in-house testing, particularly in the absence of FDA-cleared alternatives, can be expected to have a detrimental effect on patient care and hospital finances.

2.
Arch Clin Biomed Res ; 6(6): 954-970, 2022.
Article in English | MEDLINE | ID: covidwho-2205482

ABSTRACT

Rapid classification and detection of SARS-CoV-2 variants have been critical in comprehending the virus's transmission dynamics. Clinical manifestation of the infection is influenced by comorbidities such as age, immune status, diabetes, and the infecting variant. Thus, clinical management may differ for new variants. For example, some monoclonal antibody treatments are variant-specific. Yet, a U.S. Food and Drug Administration (FDA)-approved test for detecting the SARS-CoV-2 variant is unavailable. A laboratory-developed test (LDT) remains a viable option for reporting the infecting variant for clinical intervention or epidemiological purposes. Accordingly, we have validated the Illumina COVIDSeq assay as an LDT according to the guidelines prescribed by the College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA). The limit of detection (LOD) of this test is Ct<30 (~15 viral copies) and >200X genomic coverage, and the test is 100% specific in the detection of existing variants. The test demonstrated 100% precision in inter-day, intra-day, and intra-laboratory reproducibility studies. It is also 100% accurate, defined by reference strain testing and split sample testing with other CLIA laboratories. Advanta Genetics LDT COVIDSeq has been reviewed by CAP inspectors and is under review by FDA for Emergency Use Authorization.

3.
Mol Cell Probes ; 58: 101744, 2021 08.
Article in English | MEDLINE | ID: covidwho-1253367

ABSTRACT

To increase the repertoire of PCR based laboratory developed tests (LDTs) for the detection of SARS-CoV-2, we describe a new multiplex assay (SORP), targeting the SARS-CoV-2's, Spike and ORF8 genes. The widely used human RNaseP internal control was modified to specifically co-amplify the RNaseP mRNA. The SORP triplex assay was tested on a cohort (n = 372; POS = 144/NEG = 228) of nasopharyngeal flocked swab (NPFS) specimens, previously tested for the presence of SARS-CoV-2 using a PCR assay targeting E and RdRp genes. The overall sensitivity and specificity of the SORP assay was: 99.31% (95% CI: 96.22-99.98%), 100.0% (95% CI: 98.4-100%) respectively. The SORP assay could also detect a panel of variants of concern (VOC) from the B1.1.7 (UK) and B1.351 (SA) lineage. In summary, access to a repertoire of new SARS-CoV-2 LDT's would assist diagnostic laboratories in developing strategies to overcome some of the testing issues encountered during high-throughput SARS-CoV-2 testing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , DNA Primers/genetics , DNA Probes/genetics , Humans , Molecular Diagnostic Techniques/methods , Reproducibility of Results , Ribonuclease P/genetics , SARS-CoV-2/physiology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
4.
Sustain Cities Soc ; 70: 102887, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1157725

ABSTRACT

The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.

5.
J Clin Virol ; 129: 104499, 2020 08.
Article in English | MEDLINE | ID: covidwho-574871

ABSTRACT

BACKGROUND: The novel respiratory virus SARS-CoV-2, responsible for over 380,000 COVID-19 related deaths, has caused significant strain on healthcare infrastructure and clinical laboratories globally. The pandemic's initial challenges include broad diagnostic testing, consistent reagent supply lines, and access to laboratory instruments and equipment. In early 2020, primer/probe sets distributed by the CDC utilized the same fluorophore for molecular detection - requiring multiple assays to be run in parallel - consuming valuable and limited resources. METHODS: Nasopharyngeal swabs submitted to UW Virology for SARS-CoV-2 clinical testing were extracted, amplified by our laboratory developed test (LDT) - a CDC-based quantitative reverse transcriptase PCR reaction - and analyzed for agreement between the multiplexed assay. Laboratory- confirmed respiratory infection samples were included to evaluate assay cross-reaction specificity. RESULTS: Triplexing correctly identified SARS-CoV-2 in 98.4% of confirmed positive or inconclusive patient samples by single-plex LDT (n = 183/186). All 170 SARS-CoV-2 negative samples tested by single-plex LDT were negative by triplexing. Other laboratory-confirmed respiratory infections did not amplify for SARS-CoV-2 in the triplex reaction. CONCLUSIONS: Multiplexing two virus-specific gene targets and an extraction control was found to be comparable to running parallel assays independently, while significantly improving assay throughput.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , DNA Primers/genetics , Oligonucleotide Probes/genetics , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL